
Patch 4.0.4 File Format

Michael Hecht
AppleLink: SAS.HECHT
Internet: Michael_Hecht@mac.sas.com
April 8, 1993

This document describes the format of the resources contained in version
4.0.4 of a ResCompare self–applying patch.

To edit a patch file, use ResEdit with the supplied ResEdit Patch templates
file. Simply open this file in ResEdit, along with a patch file, to provide
editing templates for the patch resources.

'ZVER' resource
A self-applying patch contains patches for any number of versions of any
number of files. There is a 'ZVER' resource for each file that is to be
updated by the patch. The resource name is the prompt to be used when
asking the user for this file.

NOTE The resource IDs for the 'ZVER' resource are not important and
are randomly generated. Use ResEdit’s “View by Order in File”
command to list these resources in the order they were
appended to the patch, from bottom to top.

The 'ZVER' resource contains some header information describing the file to
be patched, followed by a list of valid versions. Here is the complete
structure of the 'ZVER' resource:

/* Information maintained for each file version */

struct {
ZVerFlags flags;
OSType fdType, fdCreator;
Size finalRsrcSize;
Str31 copyName;
short numVersions;

struct {
unsigned long fromVersion;
unsigned long toVersion;
short zapListID;
long totalMunges;

} theZapRef[];
} ZapVersion;

flags
A bitmask of flags that can be OR-ed together, with the following definitions:

/* Zap version flags */
enum {

kPatchACopy = 0x0001
} ZVerFlags;

kPatchACopy
If set, this flag indicates that the patch application should prompt the
user to save a copy of the target file. The patch can provide a default
name for the copy. If the user chooses to save the copy over the
original, the patch is performed in–place, as though this flag were not
set.

fdType, fdCreator
These fields are the type and creator of the target file. Only files matching
this criteria are listed in the GetFile dialog. You can remove the creator
criteria by setting the creator to 0.

finalRsrcSize
Final size in bytes of the file’s resource fork after patching. This field is used
to determine if disk space is available to perform the patch.

copyName
If the kPatchACopy bit is set in the flags, this field is used as the default
name for the copy of the target file.

numVersions
The number of version records to follow.

theZapRef[]
A list of version records. This list is searched to locate a The version
records use the following format:

fromVersion
The 4–byte version code this patch converts from.

toVersion
The 4–byte version code this patch converts to.

zapListID
The resource ID of the 'ZAP#' resource for this patch.

totalMunges
The total of all the numMunges fields in the corresponding 'ZAP#'. This info
is used to calculate the goal for the status thermometer.

'ZFIL' resource
Use a 'ZFIL' resource to automatically identify a file’s location without
prompting the user. The file may be in a folder locatable by FindFolder. The
resource ID of the 'ZFIL' resource must match the 'ZVER' resource ID. The
file must also have the same fdType and fdCreator as listed in the 'ZVER'
resource.

/* Will have the same ID as its corresponding ZVER */

typedef struct {
OSType folderType;
short numFileLocs;

struct {
short region;
Str31 name;

} theFileLoc[];
} ZapFileLocList;

folderType
A four–character type code recognized by FindFolder. The patch will
search this folder on the system disk.

Set the folderType to a longword binary 0 (zero) to search for the target
file by its full or partial pathname. Partial pathnames are resolved relative
to the default volume and directory. The initial default volume and directory
is the root directory of the system disk. To set folderType to zero with
ResEdit, open an existing 'ZFIL' resource with the option key held down and
change the first four bytes using the hex editor.

Set the folderType to a longword binary 1 to have the same effect as 0, but
to reset the default volume and directory to its initial location first.

numFileLocs
The number of possible file names to follow.

theFileLoc[]
A list of file names. A list is used so multiple international spellings can be
included. Each file name is accompanied by its region code, and the name
corresponding to the current language of the system script is used.

region
The region code that identifies this name, or the constant kAnyRegion
(–1) to match any region. Region codes are listed in Inside Macintosh,
Volume VI, p. 14–84, table 14–10, in the <Packages.h> header file, and in
ResEdit’s “Country Code” pop–up menu located in the 'vers' editor.

name

The file name to look for, localized for this language.

The patch will scan the file loc list looking for a region code that matches
the region of the system script, or for the wildcard value kAnyRegion (–1).

If a file name cannot be found for the current region, the folder cannot be
found, the requested file does not exist, or the file exists but its type and
creator don’t match, the patch will prompt the user for the file. If the patch
was able to determine a file name, it places the name as dialog substitution
parameter “^0”, so you can use a prompt string of “Where is ^0?” to
include the localized name in the prompt.

You can also provide a partial pathname, such as “:MyApp Folder:MyApp” to
search a folder at the root level of the system disk named “MyApp Folder”
for the “MyApp” application.

'ZAP#' resource
The 'ZAP#' resource contains a list of all resources that need to be patched,
for a given version transition of a given file. The 'ZVER' contains a list of
'ZAP#' resource IDs. The resource name of the 'ZAP#' will be the name of
the master file from which the patch was created. This name is not used by
the patch and is for reference purposes only.

struct {
short numZaps;

/* Information maintained for each resource to be zapped */
struct {

short zapID;
ZapFlags flags;
ResType resType;
short resID;

/* These fields are used to verify the resources */
short resAttrs;
Size resSize;
Str255 resName;

} theZap[];
} ZapList;

numZaps
The number of zap records to follow. There is one for each resource to be
patched.

zapID
The resource ID of the 'ZAP ' resource that holds the munge data for
patching this resource. There is also a corresponding 'ZIS#' or 'ZIL#'
resource with this ID, based on the setting of the shortMunges flag.

flags

A bitmask of flags that can be OR-ed together, with the following definitions:

/* Flags for use in the ZapRecord */
enum {

shortMunges = 0x0001,
needNotVerify = 0x0002,
verifyFailed = 0x0004,
alwaysUpdate = 0x0008

} ZapFlags;

shortMunges
If set, this flag indicates that both the master and update resource are
less than 32K, and 16–bit integers can be used for their offsets and
lengths. Otherwise, 32–bit integers must be used. Most resources are
less than 32K.

needNotVerify
If set, this flag indicates that, should resource verification fail, the
patch application should perform the operation anyway in certain
cases. If adding a resource that already exists, no change is made. If
deleting a resource, the resource can be of any length if it exists. If
changing a resource, no change is made.

verifyFailed
This flag is used internally during the patching process and should be
set to 0.

alwaysUpdate
If set, this flag indicates that, should resource verification fail, the
patch application should perform the operation anyway in all cases. If
adding a resource that already exists, the entire resource is replaced.
If deleting a resource, the resource can be of any length if it exists. If
changing a resource, the resource’s size is adjusted to its size in the
master file and the patch is applied anyway.

The needNotVerify bit must be set for alwaysUpdate to take effect.

resType, resID
This is the resource type and ID of the resource to be patched.

resAttrs
These are the expected resource attributes of the master resource. These
attributes must match during resource verification.

resSize
This is the expected size of the master resource. If the resource is being
added, this size will be 0. The sizes must match during resource verification.

resName

This is the expected name of the master resource. The names must match
during resource verification.

'ZIL#' and 'ZIS#' resources
The 'ZIL#' and 'ZIS#' resources contain a list of munges, or patch
operations to be performed on a resource. Their formats are identical,
except the 'ZIL#' uses 32–bit offsets and lengths, while the 'ZIS#' uses 16–
bit offsets and lengths. 'ZIS#' is typically used, except for extremely large
(>32K) resources.

If masterLength is the same as updateLength (a typical occurrence), the
updateLength is suppressed, and the high bit of masterLength is set by
masking in the constant SameLengthFlag or ShortSameLengthFlag. For this
reason, the supplied ResEdit templates for viewing these resources simply
dumps the munge instructions as hex data.

/* 'ZIL#' */
struct {

short numMunges;
Size sizeofMunges;

struct {
long masterOffset;
long masterLength;
long updateLength;

} theMunge[];
} MungeList;

/* This flag is set on masterLength when updateLength is the same */
#define SameLengthFlag 0x80000000

/* 'ZIS#' */
struct {

short numMunges;
Size sizeofMunges;

struct {
short masterOffset;
short masterLength;
short updateLength;

} theMunge[];
} ShortMungeList;

/* This flag is set on masterLength when updateLength is the same */
#define ShortSameLengthFlag 0x8000

'ZAP ' resource
The 'ZAP ' resource (note trailing space) contain the actualmunge data
that’s used for insert or replace patch operations.

/* ZAP resource--the munge data to insert/replace */
#define ZapMungeType 'ZAP '

